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Abstract Two-factor mating designs at consecutive S n 
and S(n+l ) levels (S o and S 1, S 1 and S~, or F 2 and F3) allow 
estimation of all components of the variation among ho- 
mozygous lines and F 1 hybrids that can be derived from a 
given population. They also allow for the prediction of the 
mean of these lines and single-cross hybrids. Some tests 
for the presence of epistasis are possible at the levels of 
means and of variances. Such mating designs can be very 
useful for predicting the value of the best possible lines or 
the best possible F 1 hybrids when it is difficult to produce, 
at an experimental level for exploratory purposes, either 
lines or hybrids. 
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Introduction 

Since Cockerham's (1954) and Kempthorne 's  (1957 ma- 
jor contributions to quantitative genetics, progenies de- 
rived from mating designs have been widely used to esti- 
mate genetic variance components in random mating pop- 
ulations. In the absence of epistasis, these designs provide 
for an estimation of additive and dominance variances. For 
breeders who improve p e r  se or combining ability values 
of their material, such components have implications in 
choosing the more efficient breeding method and in pre- 
dicting the expected genetic advance in recurrent selection. 
However, for the development of completely inbred lines, 
additive and dominance variances are not sufficient be- 
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cause they do not describe all of the variation involved at 
the homozygous level. At is this level, besides the additive 
variance, two additional parameters must be considered: 
the covariance between additive effect and interaction ef- 
fect between identical alleles, and the variance of interac- 
tion between identical alleles (Gillois 1964; Harris 1964; 
Gallais 1970, 1974; Cornelius 1975). According to Gallais 
(1988), it is possible to estimate such parameters from two- 
factor mating designs among S o plants including SoxS 0 
crosses and the self (S1) of the parents. The simultaneous 
study of S0xS o crosses and of S 1 progenies does provide 
estimation of the additive and dominance variances and of 
the two additional components for variance among lines. 
The reconstruction of total genetic variance among lines 
and among hybrids is then possible. Such designs are well 
adapted for species where it is easy to test S0x S o crosses. 
This will not be the case, in particular for self-pollinating 
species, when SoxS o crosses give reduced seed numbers 
that prevent any direct cross performance study. 

In this paper, a two-factor (factorial, diallelic or hierar- 
chical) mating design among S o plants is proposed, for 
which each cross among S o plants is used to produce S 1 
and S 2 generations in bulk. In the absence of epistasis, com- 
bined analysis of the two-factor mating designs at the S 1 
and S 2 levels allows estimation of the three variance com- 
ponents among homozygous lines and the homozygous line 
mean. In the same way, this design provides an estimate of  
dominance variance and of the F 1 hybrid mean.  In the pres- 
ence of epistasis restricted to the additive • additive type, 
it is also possible to estimate the associated component of 
variance. The mean and variance of all possible F 1 hybrids 
can then be compared to those of homozygous lines. This 
approach c~n be useful for choosing between line or hy- 
brid developments. 

Variance component estimation 

The aim is to estimate the four variance components in- 
volved in the variances among homozygous lines and F 1 
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hybrids. Using the notation introduced by Kempthorne 
(1957) and already used by Gallais (1974), in the absence 
of epistasis we can write 0-~=200 2 +200ADo+002o for the var- 
iance among all lines that can be derived from a random 
mating population and 002=o00~+002 for the variance among 
all single-cross hybrids. 

002 is the additive variance, 0-2 the dominance variance, 
002 0 the homozygous dominance variance, and 0-2Do the 
covariance between additive effect and homozygous dom- 
inance effects. 

Definitions and equivalents for the notation of param- 
eters in terms of the Q-model (Cornelius and Van Sanford 
1988), C-model (Cornelius 1975; Cornelius and Dudley 
1976), and D-model,(Cockerham 1983) are given in Ap- 
pendix 1. The parameter ~ Do2=z~ [E (/~ii)l] 2, as already 
noticed by Wright and Cockerham (1986), is not involved 
in the variance among bulked partially inbred families de- 
rived from S o . Therefore, there are only four parameters 
and not five, as in the general case of covariances among 
inbred relatives (Gillois 1964; Harris 1964). From the point 
of view of variance ~component estimation, the situation 
considered in this paper is simpler than the general one 
considered by Gallais (1976), Cornelius and Dudley 
(1976), Cornelius (1988), and Cornelius and Van Sanford 
(1988). 

Consider a two-way mating design at the S 1 and $2 lev- 
els. The cross of two S o plants gives a full-sib family that 
is evaluated for its value at the S 1 and $2 levels. This eval- 
uation is equivalent to the evaluation of the full-sib fam- 
ily for two specific characters, the S 1- and Sa-value (Gal- 
lais 1990b). It is then possible to estimate the covariances 
among full-sibs and among half-sibs as with the test of 
S0• o crosses. According to Gallais (1988, 1990a), in the 
absence of epistasis it is possible to write directly: 

Cov (FS)sl =1/2 002s1+1/4 0"2SI 
Coy (HS)sl=I/4 002AS 1 (1) 

Coy (FS)s2 =1/2 00~s2+1/4 a~s2 

Coy (HS)s2=I/4 a2s2 

with 002s, (n= 1 or 2) and 002Sn being the additive and dom- 
inance variances for genotypic values at the Sn level. 

This approach allows condensed expressions of 
cov(FS)s n and cov(HS)sn. Obviously, to go further it is nec- 
essary to express each component of the variance in terms 
of elementary components defined for covariances 
between inbred relatives. With a i the additive effect of al- 
lele A i and flij the dominance effect for alleles A i and Aj, 
the additive effect defined for bulked inbred progenies at 
the Sn level is given by: sntZi=ai+l/2(1-1/2 n) fli'i, where 
fl{i=flii-E(flii), with a i being the additive effect defined in 
random mating population, and flii the interaction between 
identical alleles ii, i.e., homozygous dominance. E( ) means 
expectation. Concerning the dominance effects, Snflij, it is 
straightforward that they are halved at each generation of 
selfing, then Snflij=l/2 n flij" Finally, it results: 

002ASn=a2A+I/2 (1--1/2n)2002o+(1--1/22 ) 00ADo (2) 

and, 

002Sn=(l/2)2n aaD (3) 

Covariance between the S 1 and So generations can also 
be computed to give a new set of two equations: 

C~ (FS)s2]=I/20ASlaS2+I/4 00DS1DS2 (4) 

C~ (HS)s2]=I/4 00AS1AS2 

with: 

aDS1 DS2=1/8 ~ (5) 

aASa AS2 =2Z E(ai+l/4 fli~) (ai+3/8 fli]) (6) 
=0"2+5/8 00ADo+3/16 002 0 . 

General expressions at the n level can be given for 
0-ASnAS(n+I) and 00DSnDS(n+l): 

00DSnDS(n+ i)=( 1/2)(2n+ 1) O2D (7) 

00ASnAS(n+l)= 4 + [  1/2+3/2(n+2) (8) 
+1/2 (2n+2)] O-aDo+[1--3/2 (n+2)] 0-20 

Table 1 summarizes the coefficients for variance com- 
ponents, including those for additive xadditive epistasis, 
involved in the six covariances: cov(FS)s 1, cov(HS)s 1, 
cov(FS)s 2, cov(HS)s2, cov(FS)sl,S2, cov(HS)sl,s2. Such 
coefficients could have been directly derived by comput- 
ing the kinship coefficients that are involved in covariance 
among inbred relatives (Gillois 1964; Harris 1964; Gallais 
1970, 1974). In particular, the 002 coefficient is twice the 
Mal6cot coefficient of kinship. Note that if linkage is sup- 
posed to be absent, coefficients of covariance between rel- 
atives for aZAA correspond to the square of 002 coefficients. 

Assuming the absence of epistasis, the four parameters 
2 2 2 2 (00A, O'ADo, 00Do and 00D) can be estimated using iterative 

weighted least square or maximum likelihood procedures, 
as there are six equations for four parameters. In addition, 
we notice that: 

Cov (HS)sn=002s, (9) 

Cov (FS)s n =2 00g2Sn+O-2Sn (10) 

2 and 2 with 0-gS~ 00ssn being the general combining ability 
(GCA) and the specific combining ability (SCA) variances, 
respectively at the S n level. The Table 1 matrix can be trans- 
formed into the matrix given in Table 2. From Table 2, it 
is now clear that, in the absence of epistasis, the last three 
rows are only relative to the 002 estimation. Thus three in- 
dependent estimates of 002 are possible, and one estimate 
of 002 is a weighted mean of these three estimates. How- 
ever, the best estimates will be by a simultaneous estima- 
tion of the four parameters. 

In the presence of epistasis, five or even six parameters 
could be estimated. However, it can be predicted that the 
accuracy of estimates will be generally poorer than by ne- 
glecting epistasis. 

Two particular designs 

Two particular designs are interesting to consider: the first 
is the one developed by the simultaneous study of (S o • So) 



crosses and their S 1 bulks,  and the second is that developed 
by the study of Fzs and F3s der ived f rom F 1 crosses between 
comple te ly  inbred lines. Coefficients  o f  var iance and co- 
var iance components  are given in Table 3. In both cases 
the four parameters  (o-2, a~r~o, (72o and cr 2) can always be  
estimated. The  second design is useful  to est imate 

2 2 2 all=era+Oh) (+ O'21 ) when it is not possible  to produce 
enough seeds for F 1 tests. 
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Table 1 Variance component coefficients for covariances that can 
be estimated with a two-factor mating design at S 1 and S 2 levels 

0_2 0.2AD ~ 0.2 0 0.2 0.~A 

Cov(FS)s I 1/2 1/4 1/16 1/16 1/4 
Cov(HS)sl 1/4 1/8 1/32 0 1/16 
Cov(FS)s e 1/2 3/8 9/64 1/64 1/4 
Cov(HS)s2 1/4 3/16 9/128 0 1/16 
Cov(FS)sLs 2 1/2 5/16 3/32 1/32 1/4 
Cov(HS)sl,s2 1/4 5/32 3/64 0 1/16 

Prediction of the best lines and the best hybrids 

Est imat ion of  variances among lines 
and among single-cross hybrids 

Est imates for the var iance among lines (ff2) and for the 0.2s~ 
variance among  single-cross hybrids ( ~ )  can be deduced ~ 
f rom the previous est imates of  var iance components :  0.~s2 

0.sS 1 
Gg=2 G2A+2 GA o+ L (11) 0.sSl, S  

2 2 2 2 
(YH= O'A+ O'D . (12) 0.sS2 

Table 2 Variance component coefficients for 0.~Sn, 0.s2s~, [with n=(l, 
2)], 0.gSl,gS2 and 0.sSl,sS2 

0.2 O.AD ~ 0.2 0 0.2 0.2AA 

1/4 1/8 1/32 0 1/16 
1/4 5/32 3/64 0 1/16 
1/4 3/16 9/128 0 1/16 
0 0 0 1/16 1/8 
0 0 0 1/32 1/8 
0 0 0 1/64 1/8 

Est imat ion of  line and hybrid  means  

S 1 and S 2 family  means  can be written: 

/.r (13) 

#S2=1/4 #H+3/4 /2L 

where  Pu  is the mean of  the r andom mating populat ion (i.e. 
the mean of  all possible  F 1 hybrids among  lines), and #L 
the mean  of  all lines. Solving Eq. 13 for yH and #L gives: 

/-/L =2 1-/S2--~S 1 (14) 

#n  =3 Ys1-2  #s2 (15) 
For a given cross among  two S o plants i and j, the value of 
all lines [L0j )] that can be derived f rom i is: 

L0j)=2 S20j) -S  l(ij) (16) 

where  Sl(ij) ans S2(ij) are the means  of  bulked S1 and $2 
f rom the cross S00j); the value of  a cross C(ij) be tween S o 
plants is: 

C0j)=3 S10j ) -2  S20j ) (17) 

The last formula  is not very useful  for So plants but be- 
comes  so when inbred lines are used as parents.  It then al- 
lows for  the predict ion of  the F 1 hybr ids '  values. Such pre- 
dictions are very useful  when it is not possible  to produce 
enough seeds for F 1 tests. It must  be noted that Eqs. 14, 
15, 16 and 17 remain valid even when additive xadd i t ive  
epistasis is present.  

F rom the predict ion formulae  for the means  and vari- 
ances of  distribution of  all possible  lines and F 1 hybrids,  it 
is then possible  to predict  the expected  mean  of  the p% se- 
lected lines, Lm~ x, and of  the p% selected F 1 hybrids Hm~ • 
by: 

Lmax =]2L+i h L O" L (18) 

�9 �9 9 2 Table 3 Variance component coefficmnts for a;sn, 0.sSn [for n= 
(0, 1)], agSO,gSl and Crsso,ss 1 expressions and for a2Fm 0.2Fn [for n=(2 
3)], 0.gF2.gF3 and O-sF2,sF 3 expressions 

0 .2 (TAD ~ 0.2 0 0 -2 O-2A 

0.~s0 1/4 0 0 0 1/16 
0.~F2 1/2 1/4 1/16 0 1/4 
O'gS0,gS1 1/4 1/16 0 0 1/16 
0.gF2,gF3 1/2 5/16 3/32 0 1/4 
0.~so 1/4 1/8 1/32 0 1/16 
0.~F3 1/2 1/4 1/16 0 114 
(72 o 0 0 0 114 1/8 
0.~F2 0 0 0 1/4 1/2 
CTsSO,sN 1 0 0 0 1/16 1/8 
0.sF2,sF3 0 0 0 1/8 1/2 

2 0.ssl 0 0 0 1/16 118 
2 0.sF3 0 0 0 1/16 1/2 

Hmax=/-/H+i h H o" H (19) 

where  i is the selection intensity corresponding to the rate 
of  selection p, and h L and h H are the square root of  broad-  
sense heritabilit ies associated to the lines and to the sin- 
gle-cross hybrids,  respectively.  

Investigating the presence of epistasis 

At the level of  variances 

At the level of  variances,  testing for  additive •  
2 and 4 2 I f  epistasis is possible  by compar ing  O-sS 1 O-ss 2. 
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2 2 (assa-4 assa) is significantly different from 0, it can be 
concluded that epistasis is present. Another contrast could 
be (2 ~s2st-Ossls2-6 as2s2). The test of epistasis could be 
also obtained by fitting the model by iterative weighted 
least squares or by maximum likelihood, without and with 
the additive xadditive component: in large samples the 
ratio of the weighted residual sums of squares from the two 
models is approximately distributed as chi-square with one 
degree of freedom. 

Another method for investigating the presence of epis- 
tasis can be proposed. It is interesting to note that when 
mating designs are considered at a given S n level, the c~  
coefficient tends toward 0 with increasing n values, and so 
does ffs 2 in the absence of epistasis. In the particular case 
of doubled haploid lines (S~) when epistasis is absent, spe- 
cific combining ability (SCA) variance will be 0 (Gallais 
1990 c). An estimate significantly different from 0 would 
then indicate the occurrence of epistatic effects. 

At the level of means 

The design described in this paper provides a test of epis- 
tasis at the level of general means or at the level of each 
cross. With the design involving S 1 and S 2 families, and 
when the S o plants (or plants from S o • S o crosses) can be 
studied simultaneously, a test of epistasis at the level of 
general means is given by (according to Eq. 13): 

3 ~tsa-2 ]../S2--#H=0 (20) 

o r  

3/-/S1-2 1./$2--1../=0 (21) 

with/.t being the mean of the random mating population. 
Note that the test according to Eq. 21 will detect only the 
epistasis affecting the mean, i. e., the average effect of dom- 
inance• epistasis at the homozygous level. 
Therefore, if Eq. 21 is confirmed, this does not mean the 
absence of epistasis. 

It is also possible to test the presence of epistasis at 
the level of each cross by using a similar contrast to Eq. 21: 

3 Sl(ij)-2 S2(ij)-Cij=0 (22) 

When parents are lines, it is easier to study simultaneously 
parents, F 2, and F 3 families, or parents and F 1 and F 2 fam- 
ilies. The test for epistasis is then the one given by Hay- 
man (1958): 

2 ~'3- P2- e=o (23) 

2 1)2-FI-P=0 (24) 

o r :  

2 1)3-3 F2+FI=0 . (25) 

Conclusion 

The mating design presented in this paper can be very use- 
ful for the simultaneous estimation of components for var- 
iance among lines and variance among single-cross hy- 
brids. Such a mating design is interesting for cross-polli- 
nating species when it is both difficult to produce crosses 
with enough seeds and time consuming and expensive to 
develop completely inbred lines (i.e., by SSD or HD). It is 
also interesting for self-pollinating species where lines ex- 
ist or are easy to produce, but where single-cross hybrids 
can also be difficult to produce with enough seeds. The 
main problem will be the accuracy of the estimates. Such 
a problem has not been considered.  However, it is clear 
that the accuracy will be determined by the accuracy for 
the estimates of the covariances between full-sibs and 
between half-sibs evaluated at the S 1 and S 2 levels. From 
this point of view a diallel mating design, with only one 
set, will be a poor design; however with several small dis- 
connected sets of parents it could be a good mating design. 
Similarly, a factorial design (or design II NC) with several 
disconnected sets could be an efficient mating design, and 
is in particular more efficient than the nested design (de- 
sign I NC) for the same number of developed and tested 
crosses. 
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Appendix 1 

Author's notation C-model a D-model b Q-model ~ 

0-2=2 Zt [E(ai)2j cr2 0-2 0-2 
O'aDo=2 z~ [E(o~ i/~ii)l] C-2 0-2 2D1 (Qyy-Qxx)/2- 0 -2 

2 -- ') 0-Do-~ [E (flii- E (flii))~] 0-2-2 C+2 0-2 D~ Qxx 

D 0 2 = ~  [E(]~ii)l] 2 ~1~ H* (Qyy+Qxx)/2 - Q x y -  0-2 

a Cornelius 1975; Cornelius and Dudley 1975 1976 
b Cockerham 1983 
c Cornelius and Van Sanford 1988 

Definitions and relationships of parameters in models for covariances of  inbred relatives, o~ i is the additive effect, flii is the interaction 
between two identical genes (homozygous dominance); ZI means the summation on the involved loci, and E( ) means expectation. 
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